package com.github.axet.lookup.proc;
import java.awt.image.BufferedImage;
* <em>This software has been released into the public domain.
* <strong>Please read the notes in this source file for additional information.
* This class provides a configurable implementation of the Canny edge detection
* algorithm. This classic algorithm has a number of shortcomings, but remains
* an effective tool in many scenarios. <em>This class is designed
* for single threaded use only.</em>
* CannyEdgeDetector detector = new CannyEdgeDetector();
* //adjust its parameters as desired
* detector.setLowThreshold(0.5f);
* detector.setHighThreshold(1f);
* detector.setSourceImage(frame);
* BufferedImage edges = detector.getEdgesImage();
* For a more complete understanding of this edge detector's parameters consult
* an explanation of the algorithm.
* http://www.tomgibara.com/computer-vision/canny-edge-detector
public class CannyEdgeDetector {
private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 100F;
private final static float MAGNITUDE_LIMIT = 1000F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
private BufferedImage sourceImage;
private BufferedImage edgesImage;
private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;
private float[] xGradient;
private float[] yGradient;
* Constructs a new detector with default parameters.
public CannyEdgeDetector() {
gaussianKernelRadius = 2f;
gaussianKernelWidth = 16;
contrastNormalized = false;
* The image that provides the luminance data used by this detector to
* @return the source image, or null
public BufferedImage getSourceImage() {
* Specifies the image that will provide the luminance data in which edges
* will be detected. A source image must be set before the process method is
* a source of luminance data
public void setSourceImage(BufferedImage image) {
* Obtains an image containing the edges detected during the last call to
* the process method. The buffered image is an opaque image of type
* BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other
* @return an image containing the detected edges, or null if the process
* method has not yet been called.
public BufferedImage getEdgesImage() {
* Sets the edges image. Calling this method will not change the operation
* of the edge detector in any way. It is intended to provide a means by
* which the memory referenced by the detector object may be reduced.
* expected (though not required) to be null
public void setEdgesImage(BufferedImage edgesImage) {
this.edgesImage = edgesImage;
* The low threshold for hysteresis. The default value is 2.5.
* @return the low hysteresis threshold
public float getLowThreshold() {
* Sets the low threshold for hysteresis. Suitable values for this parameter
* must be determined experimentally for each application. It is nonsensical
* (though not prohibited) for this value to exceed the high threshold
* a low hysteresis threshold
public void setLowThreshold(float threshold) {
throw new IllegalArgumentException();
lowThreshold = threshold;
* The high threshold for hysteresis. The default value is 7.5.
* @return the high hysteresis threshold
public float getHighThreshold() {
* Sets the high threshold for hysteresis. Suitable values for this
* parameter must be determined experimentally for each application. It is
* nonsensical (though not prohibited) for this value to be less than the
* a high hysteresis threshold
public void setHighThreshold(float threshold) {
throw new IllegalArgumentException();
highThreshold = threshold;
* The number of pixels across which the Gaussian kernel is applied. The
* @return the radius of the convolution operation in pixels
public int getGaussianKernelWidth() {
return gaussianKernelWidth;
* The number of pixels across which the Gaussian kernel is applied. This
* implementation will reduce the radius if the contribution of pixel values
* is deemed negligable, so this is actually a maximum radius.
* @param gaussianKernelWidth
* a radius for the convolution operation in pixels, at least 2.
public void setGaussianKernelWidth(int gaussianKernelWidth) {
if (gaussianKernelWidth < 2)
throw new IllegalArgumentException();
this.gaussianKernelWidth = gaussianKernelWidth;
* The radius of the Gaussian convolution kernel used to smooth the source
* image prior to gradient calculation. The default value is 16.
* @return the Gaussian kernel radius in pixels
public float getGaussianKernelRadius() {
return gaussianKernelRadius;
* Sets the radius of the Gaussian convolution kernel used to smooth the
* source image prior to gradient calculation.
* @return a Gaussian kernel radius in pixels, must exceed 0.1f.
public void setGaussianKernelRadius(float gaussianKernelRadius) {
if (gaussianKernelRadius < 0.1f)
throw new IllegalArgumentException();
this.gaussianKernelRadius = gaussianKernelRadius;
* Whether the luminance data extracted from the source image is normalized
* by linearizing its histogram prior to edge extraction. The default value
* @return whether the contrast is normalized
public boolean isContrastNormalized() {
return contrastNormalized;
* Sets whether the contrast is normalized
* @param contrastNormalized
* true if the contrast should be normalized, false otherwise
public void setContrastNormalized(boolean contrastNormalized) {
this.contrastNormalized = contrastNormalized;
width = sourceImage.getWidth();
height = sourceImage.getHeight();
picsize = width * height;
computeGradients(gaussianKernelRadius, gaussianKernelWidth);
int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
int high = Math.round(highThreshold * MAGNITUDE_SCALE);
performHysteresis(low, high);
// private utility methods
private void initArrays() {
if (data == null || picsize != data.length) {
magnitude = new int[picsize];
xConv = new float[picsize];
yConv = new float[picsize];
xGradient = new float[picsize];
yGradient = new float[picsize];
// NOTE: The elements of the method below (specifically the technique for
// non-maximal suppression and the technique for gradient computation)
// are derived from an implementation posted in the following forum (with
// clear intent of others using the code):
// http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0
// My code effectively mimics the algorithm exhibited above.
// Since I don't know the providence of the code that was posted it is a
// possibility (though I think a very remote one) that this code violates
// someone's intellectual property rights. If this concerns you feel free to
// contact me for an alternative, though less efficient, implementation.
private void computeGradients(float kernelRadius, int kernelWidth) {
// generate the gaussian convolution masks
float kernel[] = new float[kernelWidth];
float diffKernel[] = new float[kernelWidth];
for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
float g1 = gaussian(kwidth, kernelRadius);
if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2)
float g2 = gaussian(kwidth - 0.5f, kernelRadius);
float g3 = gaussian(kwidth + 0.5f, kernelRadius);
kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
diffKernel[kwidth] = g3 - g2;
int maxX = width - (kwidth - 1);
int initY = width * (kwidth - 1);
int maxY = width * (height - (kwidth - 1));
// perform convolution in x and y directions
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
float sumX = data[index] * kernel[0];
for (; xOffset < kwidth;) {
sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
for (int i = 1; i < kwidth; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
for (int x = kwidth; x < width - kwidth; x++) {
for (int y = initY; y < maxY; y += width) {
for (int i = 1; i < kwidth; i++) {
sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
maxY = width * (height - kwidth);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int indexN = index - width;
int indexS = index + width;
int indexNW = indexN - 1;
int indexNE = indexN + 1;
int indexSW = indexS - 1;
int indexSE = indexS + 1;
float xGrad = xGradient[index];
float yGrad = yGradient[index];
float gradMag = hypot(xGrad, yGrad);
// perform non-maximal supression
float nMag = hypot(xGradient[indexN], yGradient[indexN]);
float sMag = hypot(xGradient[indexS], yGradient[indexS]);
float wMag = hypot(xGradient[indexW], yGradient[indexW]);
float eMag = hypot(xGradient[indexE], yGradient[indexE]);
float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
* An explanation of what's happening here, for those who want
* to understand the source: This performs the "non-maximal
* supression" phase of the Canny edge detection in which we
* need to compare the gradient magnitude to that in the
* direction of the gradient; only if the value is a local
* maximum do we consider the point as an edge candidate.
* We need to break the comparison into a number of different
* cases depending on the gradient direction so that the
* appropriate values can be used. To avoid computing the
* gradient direction, we use two simple comparisons: first we
* check that the partial derivatives have the same sign (1) and
* then we check which is larger (2). As a consequence, we have
* reduced the problem to one of four identical cases that each
* test the central gradient magnitude against the values at two
* points with 'identical support'; what this means is that the
* geometry required to accurately interpolate the magnitude of
* gradient function at those points has an identical geometry
* (upto right-angled-rotation/reflection).
* When comparing the central gradient to the two interpolated
* values, we avoid performing any divisions by multiplying both
* sides of each inequality by the greater of the two partial
* derivatives. The common comparand is stored in a temporary
* variable (3) and reused in the mirror case (4).
if (xGrad * yGrad <= (float) 0 /* (1) */
? Math.abs(xGrad) >= Math.abs(yGrad) /* (2) */
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*
&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*
&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*
: Math.abs(xGrad) >= Math.abs(yGrad) /* (2) */
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*
&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*
&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*
magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
// NOTE: The orientation of the edge is not employed by this
// implementation. It is a simple matter to compute it at
// this point as: Math.atan2(yGrad, xGrad);
// NOTE: It is quite feasible to replace the implementation of this method
// with one which only loosely approximates the hypot function. I've tested
// simple approximations such as Math.abs(x) + Math.abs(y) and they work
private float hypot(float x, float y) {
return (float) Math.hypot(x, y);
private float gaussian(float x, float sigma) {
return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
private void performHysteresis(int low, int high) {
// NOTE: this implementation reuses the data array to store both
// luminance data from the image, and edge intensity from the
// This is done for memory efficiency, other implementations may wish
// to separate these functions.
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (data[offset] == 0 && magnitude[offset] >= high) {
follow(x, y, offset, low);
private void follow(int x1, int y1, int i1, int threshold) {
int x0 = x1 == 0 ? x1 : x1 - 1;
int x2 = x1 == width - 1 ? x1 : x1 + 1;
int y0 = y1 == 0 ? y1 : y1 - 1;
int y2 = y1 == height - 1 ? y1 : y1 + 1;
data[i1] = magnitude[i1];
for (int x = x0; x <= x2; x++) {
for (int y = y0; y <= y2; y++) {
if ((y != y1 || x != x1) && data[i2] == 0 && magnitude[i2] >= threshold) {
follow(x, y, i2, threshold);
private void thresholdEdges() {
for (int i = 0; i < picsize; i++) {
data[i] = data[i] > 0 ? -1 : 0xff000000;
private int luminance(float r, float g, float b) {
return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
private void readLuminance() {
int type = sourceImage.getType();
if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
data[i] = luminance(r, g, b);
} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xff);
} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xffff) / 256;
} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int b = pixels[offset++] & 0xff;
int g = pixels[offset++] & 0xff;
int r = pixels[offset++] & 0xff;
data[i] = luminance(r, g, b);
for (int x = 0; x < sourceImage.getWidth(); x++) {
for (int y = 0; y < sourceImage.getHeight(); y++) {
int p = sourceImage.getRGB(x, y);
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
data[y * sourceImage.getWidth() + x] = luminance(r, g, b);
// original exception. i prefer slow run over error
// throw new IllegalArgumentException("Unsupported image type: " +
private void normalizeContrast() {
int[] histogram = new int[256];
for (int i = 0; i < data.length; i++) {
int[] remap = new int[256];
for (int i = 0; i < histogram.length; i++) {
int target = sum * 255 / picsize;
for (int k = j + 1; k <= target; k++) {
for (int i = 0; i < data.length; i++) {
data[i] = remap[data[i]];
private void writeEdges(int pixels[]) {
// NOTE: There is currently no mechanism for obtaining the edge data
// in any other format other than an INT_ARGB type BufferedImage.
// This may be easily remedied by providing alternative accessors.
if (edgesImage == null) {
edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);